THEORIE WOCHE 5

1.1 Die Funktion zweiten Grades, die quadratische Funktion

Eine Parabel wird durch drei Punkte bestimmt. Daraus lassen sich drei Formen der Funktion zweiten Grades bestimmen

1.1.1 Die Funktion zweiten Grades gegeben als Polynom vom Grade 2

$$y = f(x) = a \cdot x^2 + b \cdot x + c$$

Die drei Koeffizienten a, b und c lassen sich aus der Angabe von drei gegebenen Punkten bestimmen.

1.1.2 Die Funktion zweiten Grades gegeben in der Nullstellenform

Falls die Parabel die x-Achse schneidet, können aus der ersten Form die Nullstellen des Polynoms bestimmt

$$y = f(x) = a \cdot (x - x_{N_1}) \cdot (x - x_{N_2})$$

1.1.3 Die Funktion zweiten Grades gegeben in der Scheitelform

Diese Form besteht aus der Verschiebung der Ursprungsparabel $y = f(x) = a \cdot x^2$ an den Ort des Maximums resp. des Minimums $M(x_{-}; y_{-})$.

$$y = f(x) = a \cdot (x - x_m)^2 + y_m$$

Der Zusammenhang zwischen den Koordinaten dieses Punktes M und der ersten Form wird wie folgt

$$y = f(x) = a \cdot (x - x_m)^2 + y_m$$

$$y = f(x) = a \cdot x^2 - 2a \cdot x_m \cdot x + \underbrace{a \cdot x_m^2 + y_m}_{c}$$

Durch Koeffizientenvergleich erhält man die folgenden Gleichungen:

$$\begin{array}{ccc}
-2a \cdot x_m = b & \Rightarrow & \underline{x}_m = \frac{-b}{2a} \\
a \cdot x_m^2 + y_m = c & \Rightarrow & \underline{y}_m = c - a \cdot x_m^2 = c - \frac{b^2}{4a}
\end{array}$$

Das Maximum oder Minimum verschiebt sich vom Ursprung des Koordinatensystems an den Ort $M(x_m; y_m)$, gegeben durch

$$M\left(\frac{-b}{2a};c-\frac{b^2}{4a}\right)$$

1.1.4 Beispiel

Gegeben sind drei Punkte der quadratischen Funktion $P_1(0;15)$; $P_2(2;3)$; $P_3(7;8)$

Gegeben sind drei Punkte der quadratischen Funktion
$$P_1(0;15)$$
; $P_2(2;3)$

$$f(0)=15 \Rightarrow \underline{c=15}$$

$$f(2)=3 \Rightarrow 4a+2b+c=4a+2b+15=3$$

$$f(7)=8 \Rightarrow 49a+7b+c=49a+7b+15=8$$

$$\Rightarrow 28a+14b+105=21$$

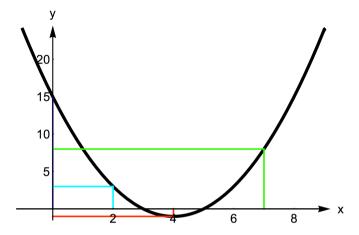
$$\Rightarrow 98a+14b+30=16$$

$$\Rightarrow 70a-75=-5 \Rightarrow \underline{a=1} \quad \underline{b=-8}$$

Damit ist die Funktion der Parabel bestimmt.

$$y = f(x) = x^2 - 8x + 15$$

Die graphische Darstellung der Parabel präsentiert sich gemäss der nachfolgenden Figur.



Wir bestimmen die beiden andern Formen. Zuerst bestimmen wir die Nullstellen und daraus die zweite Form:

2

$$x^2 - 8x + 15 = 0$$
 $\Rightarrow x_{N_{12}} = 4 \pm \sqrt{16 - 15} = 4 \pm 1$ $\Rightarrow x_{N_1} = 3$ $x_{N_2} = 5$

$$\Rightarrow x_{N_1} = 3$$
 x_{N_2}

Damit wird die zweite Form:

$$\Rightarrow y = f(x) = (x-3)(x-5)$$

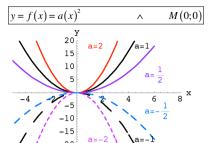
Die dritte Form erhalten wir aus der Berechnung der Koordinaten des Scheitels

$$x_m = \frac{-b}{2a} = 4$$

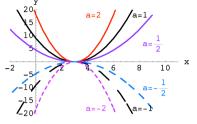
$$y_m = c - \frac{b^2}{4a} = -1$$

$$\Rightarrow$$
 $y = f(x) = (x-4)^2 - 1$ mit $M(4;-1)$

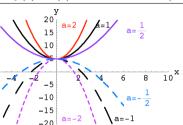
1.1.5 Beispiele und Überblick



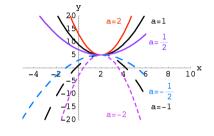




$$y = f(x) = a \cdot (x)^2 + 5 \qquad \land \qquad M(0;5)$$



$$y = f(x) = a \cdot (x-2)^2 + 5$$
 \wedge $M(2;5)$



$$y = f(x) = a \cdot (x+2)^{2} + 5 \qquad M(-2;5)$$

$$a = 1$$

$$a = \frac{1}{2}$$

$$a = -\frac{1}{2}$$

$$a = -1$$

$$a = -2$$

1.1.6 Eigenschaften der zweiten Form

Im Vergleich zur Funktion $y = f(x) = x^2$ hat der Graph der Funktion $y = f(x) = a \cdot (x - x_m)^2 + y_m$ die folgenden Eigenschaften:

|a| > 1 bedeutet eine Streckung in y – Richtung, a > 0 die Parabel ist nach oben geöffnet. Verschiebung in x-Richtung $M(x_m; y_m) \wedge a > 0$ M ist das Minimum

|a| < 1 bedeutet eine Stauchung in y-Richtung a < 0 die Parabel ist nach unten geöffnet Verschiebung in y-Richtung $M(x_m; y_m) \wedge a < 0$ M ist Maximum

Überlegungen zur Aufgabe 15:

Gilt für eine Polynom vom Grade 3: p(x) = 0, also $p(x) = ax^3 + bx^2 + cx + d = 0$, dann kann dasselbe Polynom geschrieben werden als:

$$p(x) = ax^3 + bx^2 + cx + d = 0 \qquad \Leftrightarrow \qquad p(x) = (x - x_1) \ q(x) = 0$$

Wenn p(x) = 0, dann genügt es, dass entweder $(x - x_1) = 0$ oder q(x) = 0 ist.

Es sind drei Fälle möglich:

1. q(x) = 0 hat zwei verschiedene Nullstellen

$$\Rightarrow q(x) = a_3 x^2 + a_2 x + a_1 = a_3 (x - x_2)(x - x_3)$$

2. q(x) = 0 hat eine Doppelnullstelle (zwei gleiche Nullstellen)

$$\Rightarrow q(x) = a_3 x^2 + a_2 x + a_1 = a_3 (x - x_2)(x - x_2) = a_3 (x - x_2)^2$$

$$\Rightarrow q(x) = (a_3 x^2 + a_2 x + a_1)$$

Dividiert man p(x) durch $(x-x_1) \neq 0$, dann entsteht das gesuchte Polynom q(x) vom Grad 2:

$$q(x) = \frac{p(x)}{(x-x_1)} = (a_3x^2 + a_2x + a_1)$$

Wir bestimmen die Nullstellen des Polynoms q(x), indem wir q(x) = 0 setzen.

Es gibt wie oben drei mögliche Fälle und daraus folgen die Darstellungen für unser gegebenes Polynom:

im 1. Fall: wenn q(x) zwei verschiedene Nullstellen hat

$$\Rightarrow p(x) = (x - x_1) \cdot a_3(x - x_2)(x - x_3)$$

im 2. Fall: wenn q(x) eine Doppelnullstelle hat

$$\Rightarrow p(x) = (x - x_1) \cdot a_3 (x - x_2)^2$$

im 3. Fall: wenn q(x) keine Nullstellen hat

$$\Rightarrow$$
 $p(x) = (x - x_1) \cdot (a_3 x^2 + a_2 x + a_1)$

Sind die Nullstellen des Polynoms durch p(x) = 0 zu bestimmen, dann gibt es 3 Fälle :

4

1. Fall:
$$\Rightarrow L_x = \{x_1; x_2; x_3\}$$

2. Fall:
$$\Rightarrow L_x = \{x_1; x_2\}$$

3. Fall:
$$\Rightarrow L_x = \{x_1 \}$$